Edit app/main.py to add your API title and description.
app = FastAPI(
title='House Price DS API',
description='Predict house prices in California',
docs_url='/'
)
Edit app/ml.py to add a predict function that returns a naive baseline.
@router.post('/predict')
async def predict(item: Item):
"""Predict house prices in California."""
y_pred = 200000
return {'predicted_price': y_pred}
In a notebook, explore your data. Make an educated guess of what features you'll use.
import pandas as pd
from sklearn.datasets import fetch_california_housing
# Load data
california = fetch_california_housing()
print(california.DESCR)
X = pd.DataFrame(california.data, columns=california.feature_names)
y = california.target
# Rename columns
X.columns = X.columns.str.lower()
X = X.rename(columns={'avebedrms': 'bedrooms', 'averooms': 'total_rooms', 'houseage': 'house_age'})
# Explore descriptive stats
X.describe()
# Use these 3 features
features = ['bedrooms', 'total_rooms', 'house_age']
Add a class in app/ml.py to use your features.
import pandas as pd
from pydantic import BaseModel
class House(BaseModel):
"""Data model to parse the request body JSON."""
bedrooms: int
total_rooms: float
house_age: float
def to_df(self):
"""Convert pydantic object to pandas dataframe with 1 row."""
return pd.DataFrame([vars(self)])
@router.post('/predict')
async def predict(house: House):
"""Predict house prices in California."""
X_new = house.to_df()
y_pred = 200000
return {'predicted_price': y_pred}
Install pandas if you haven't already.
Test locally. Now your web teammates can make POST requests to your API endpoint.
In a notebook, train your pipeline and pickle it. See these docs: