FastAPI

Learn

Example: Data visualization

Labs projects can use Plotly, a popular visualization library for both Python & JavaScript.

Follow the getting started instructions.

Edit app/main.py to add your API title and description.

app = FastAPI(
    title='World Metrics DS API',
    description='Visualize world metrics from Gapminder data',
    docs_url='/'
)

Prototype your visualization in a notebook.

import plotly.express as px

dataframe = px.data.gapminder().rename(columns={
    'year': 'Year', 
    'lifeExp': 'Life Expectancy', 
    'pop': 'Population', 
    'gdpPercap': 'GDP Per Capita'
})

country = 'United States'
metric = 'Population'
subset = dataframe[dataframe.country == country]
fig = px.line(subset, x='Year', y=metric, title=f'{metric} in {country}')
fig.show()

Define a function for your visualization. End with return fig.to_json()

Then edit app/viz.py to add your code.

Install plotly and test locally.

Your web teammates will re-use the data viz code & docs in our labs-spa-starter repo. The web app will call the DS API to get the data, then use react-plotly.js to render the visualization.

Plotly Python docs

Plotly JavaScript docs

Example: Machine learning

Follow the getting started instructions.

Edit app/main.py to add your API title and description.

Edit app/ml.py to add a predict function that returns a naive baseline.

In a notebook, explore your data. Make an educated guess of what features you'll use.

Add a class in app/ml.py to use your features.

Install pandas if you haven't already.

Test locally. Now your web teammates can make POST requests to your API endpoint.

In a notebook, train your pipeline and pickle it. See these docs:

Get version numbers for every package you used in your pipeline. Install the exact versions of these packages in your virtual environment.

Edit app/ml.py to deserialize your model and use it in your predict function.

Now you are ready to re-deploy! 🚀

Last updated

Was this helpful?